The nature and origin of spontaneous noise in G protein-gated ion channels
نویسندگان
چکیده
Arrival of agonist is generally thought to initiate the signal transduction process in G protein-receptor coupled systems. However, the muscarinic atrial K+ (K+[ACh]) channel opens spontaneously in the absence of applied agonist, giving a noisy appearance to the current records. We investigated the nature and origin of the noise by measuring single channel currents in cell-attached or excised, inside-out membrane patches. Guanosine triphosphate (GTP) produced identical single channel currents in a concentration- and Mg(2+)-dependent manner in the presence or absence of carbachol, but the requirements for GTP were greater in the absence of agonist. Hence the agonist-independent currents appeared to be produced by an endogenous G protein, Gk. This prediction was confirmed when an affinity-purified, sequence-specific Gi-3 alpha antibody or pertussis toxin (PTX) blocked the agonist-independent currents. Candidate endogenous agonists were ruled out by the lack of effect of their corresponding antagonists. Thus agonist-independent currents had the same nature as agonist-dependent K+[ACh] currents and seemed to originate in the same way. We have developed a hypothesis in which agonist-free, empty receptors prime Gk with GTP and Gk activates atrial K+ [ACh] channels producing basal currents or noise. Agonist-independent activation by G proteins of effectors including ion channels appears to be a common occurrence.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملControlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons
We investigate the regularity of spontaneous spiking activity on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut links between physically distan...
متن کاملIon channels and signaling in the pituitary gland.
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 97 شماره
صفحات -
تاریخ انتشار 1991